
To compare our data on the maximum thickness of the two-phase layer in developed boil- 
ing with data on the limiting thickness of an individual bubble 6s , we averaged values of 
~tp over q on sections of the relation 6tp(q) and found the values of #tp shown in Fig. 2. 
Values of 6s calculated by the method in [2] are plotted off the horizontal axis. It is 
evident that on the average the quantity #tp, changing in proportion to 6s ' somewhat exceeds 
the latter; as a first approximation, 6tp =-6s + 0.2 mm. 

Thus, it can be concluded on the basis of the completed tests that in the developed nu- 
cleate boiling of liquids on a downward-turned horizontal surface, the maximum thickness of 
the two-phase layer may not be significantly greater than double the capillary constant 
and will be independent of the heat flux. In the case of sheet boiling, this conclusion 
is valid for the thickness of the vapor film which covers the heating surface. 
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THEORETICAL STUDY OF THE STABILITY OF NUCLEATE BOILING 

AND PULSATIONS OF THE TEMPERATURE OF A WALL HEATED 

BY A HOT LIQUID 

S. A. Kovalev and S. V. Usatikov UDC 536.2 

An analysis is made of the mechanism ofdevelopment of temperature pulsations 
and conditions of the disturbance of the heat balance of a wall. 

The heat-transfer crisis associated with the transition from nucleate boiling to sheet 
boiling poses a serious hazard, since it is accompanied by a sharp increase in wall tempera- 
ture and may lead to burning of the heating surface. The boiling regime which exists under 
conditions of free convection is unambiguously determined by the difference between the tem- 
perature of the wall and the saturation temperature (O = T - Ts). Proceeding on the basis 
of this fact, the authors of [i, 2] hypothesized that the notions of the stability of the 
temperature field of a heating element are equivalent. A sudden change in the temperature 
field in the event of a change of boiling regimes can be regarded as the result of distur- 
bance of the heat balance of the wall [3]. Thus, to evaluate the stability of the tempera- 
ture field, it is sufficient to solve the nonsteady heat-conduction problem for the wall. 
An analysis of the heat balance of the wall makes it possible to determine the region of 
stable operation and determine the magnitude of the deviations that are causing the shift 
in boiling regime. 

Along with the heat-transfer crisis, danger is also presented by pulsation of the tem- 
perature of the wall. Such fluctuations may lead to fatigue failure of the wall material 
[4, 5]. As was shown in [4], analysis of the temperature field of a heating wall makes it 
possible to predict the conditions under which temperature fluctuationsmay be intensified. 

The need for analysis of the temperature fields of walls has been noted in several 
other publications devoted to study of the stability of boiling regimes. For example, the 
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Fig. i. Temperature distribution along the rod at the ini- 
tial moment, �9 = 0; 2As - region of sheet-boiling source. 

Fig. 2. Dependence of the local critical overheating of the 
wall Gdevn on pressure (a -p = I bar, b - 50, c - i00) and the 
dimensions of the hot spot: i) As = i mm; 2) 2; 3) 5; 4) i0; 5) 
more than 20 mm; 6) data from [2]; 7, 8) nucleate and transla- 
tional boiling regimes; 9) limiting superheating of the liq- 
uid. 

stability of boiling was evaluated with infinitesimal deviations of wall temperature in [6] 
and deviations of finite magnitude with the appearance of domains in [7]. In [8], the shift 
in boiling regimes was examined as a self-similar process. 

Disturbance of the Heat Balance of the Wall. It is known that in the case of nucleate 
boiling on a massive, uniformly heated wall (slab, sphere) made of a material with a high 
thermal conductivity, the heat-transfer crisis is the result of disturbance of the hydrody- 
namic stability of the two-phase boundary layer at a heat flux equal to qcrl- Here, all 
points of the heating surface have roughly the same temperature. 

The mechanism of the crisis changes if the heating elements have relatively thin walls. 
As a result of deviations of the regime parameters or perturbations introduced from the out- 
side during boiling, the local temperature of the wall may deviate from the mean steady-state 
value. A hot spot is formed on the wall. This spot is sometimes referred to as a sheet- 
boiling source. The hot spot either disappears (if its dimensions and the wall-temperature 
deviations are small) or grows (if its dimensions and the temperature deviations are substan- 
tial). In the latter case, the high-temperature front propagates along the surface until 
sheet boiling has embraced the entire surface. Let us calculate the temperature and dimen- 
sions of the hot spot at which the heat-transfer crisis occurs. 

We will examine the process of boiling on the lateral surface of a horizontal rod of 
diameter d and length s For simplicity, we assume that temperature changes only along the 
rod. This assumption is valid if the condition Bi = qd/(IO) < 1 is satisfied. The tempera- 
ture profile is described by the unidimensional equation 

~,of ae = xf  ~ ~_~ _ 
8z Ox 2 

w i t h  t h e  b o u n d a r y  and i n i t i a l  c o n d i t i o n s  ( F i g .  l a )  

a@ ~=o = 8 0  
Ox Ox 

qm u + qu (i) 

--x=,= 0, (2) 
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TABLE i. Parameters of the First and Second 
Crises in the Boiling of Water 

p, bar r W/m21 q'crz ' W/rnZ Oct l ,  K Ocr z, K 
I 

1 
60 
100 

10 6 4.10 a 
4.10 s 14.10 ~ 
4.10~ 14-10 4 

25 
15 
9 

125 
75 
a5 

at~ =0: 

O = O n u c + A O  at O . ~ x ~ A l ,  ( 3 )  

O = Onuc at A l < x . ~ l ,  ( 4 )  

where q = qvf/U; qv is the volumetric heat flux. 

We isolate three regimes on the boiling curves qN(O) and we adopt a different heat- 
transfer law for each regime: 

Nucleate (0 ~ O/Ocr 2 K 0.2) 

qN/@rl = 125 (O/Ocr,) ~, ( 5 )  

t r a n s i t i o n a l  ( 0 . 2  < O / O c r  a g 1 )  

sheet (i < 8/8cr2) 

qg Iqart. -~ 0.04 (O/Ocr,) -~, 

qg/qcr, = 0,04 (e/| 

The values of the constants are shown in Table i. 

As was shown in [9], the presence of the temperature gradient on the heating surface 
leads to some distortion of the boiling curve. For example, heat transfer is intensified 
in the region of the second boiling crisis. Equations (5) were constructed with allowance 
for the reconxnendations in [9]. 

Let a temporary disturbance of the heat-transfer regime on a certain section of a rod 
of the length 2&s at a certain moment of time T = 0 result in a deviation of wall tempera- 
ture from the steady-state value Onu c by the amount hO (Fig. la). This temperature profile 
is taken as the initial condition (3)-(4). We then calculate the critical value ASma x for 
which the following conditions are satisfied: nculeate boiling is established on the rod 
at A8 < AOmax, while the transition to sheet boiling occurs along the entire rod at O > 
ASma x. The problem was solved numerically by the establishment method for a stainless steel 
rod with a diameter of 2 mm and length s = 1 m. Figure 2 shows the calculated critical val- 

ues of the deviations Odevn = 8nu c + AOma x. 

As might be expected, the quantity AOma x depends on As In the case of small hs 
AOma x is large. The value of ASma x initially decreases with an increase in As but takes 
an asymptotic value at hs + s According to [3, i0], the asymptotic value of the deviation 
corresponds to the temperature head in the transitional boiling regime (lines 8 in Fig. 2). 
The value of AOma x decreases with an increase in q. Thus, for example, AOma x decreases 
from 9 to 3~ with an increase in q from 0.4qcrl to 0.8qcrl (line 2 in Fig. 2c). At q 
qcrl, any small increase in wall temperature may lead to the crisis, i.e., AOma x + 0. 

Kovalev [2] analytically determined the steady-state solutions of Eq. (i). These 
solutions are temperature profiles having fairly sharp maxima. It was shown that the steady- 
state solutions are unstable, the instability being manifest in the fact that such local 
deviations of temperature initiate a transition to sheet boiling over the entire rod. Criti- 
cal values of the temperature maximum are shown in Fig. 2a on line 6. The laws discovered in 
[2] are in agreement with the results of our numerical calculations. 

Several investigators [11-13] have suggested that a heat-transfer crisis will take place 
if the wall temperature in the region of the hot spot exceeds the temperature corresponding 
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to the limiting superheating of the liquid. It is proposed that the crisis is thermodynamic 
in nature. However, calculations do not support this proposition. It can be seen from Fig. 
2 that the coincidence of AOma x + Onu c with Os is only a special case. Thus, for example, 
at As = i mm, they coincide only when q = 0.4qcrl. 

Consequently, for heat fluxes close to qcrl, the quantity AOma x will always be less 
than Os - Onu c, and the hypothesis of the thermodynamic nature of the crisis will overesti- 
mate the safety threshold for overheating of the wall. The reliability of the above calcula- 
tions can be checked against the following indirect empirical data. Let a steady nucleate 
regime be maintained on a heated horizontal rod. The surface of the rod is covered by insu- 
lation over a section of the length 2As of its central part, so this section is not in con- 
tact with the boiling liquid (the thermal insulation simulates a sheet-boiling source). 
Heat is removed from the insulated section by conduction. The temperature distribution along 
the rod is shown in Fig. lb. 

The stationary temperature distribution along the rod is described by Eq. (i) without 
the left side and by boundary condition (2). On the insulated section, qN = 0, and we can 
write the following for the heat flux along the axis at the boundary of the insulated sec- 
tion: 

dO ~=Al--o= -- qvAI = --4q Al 
dx -d- (6) 

It is not hard to use Eq. (i) to also obtain an expression for the temperature gradient on 
the section cooled by the boiling liquid [2]. For the section adjacent to the insulated 
section, we have 

dOdx x=m+0 = -~/- --d-- -[ --~j§ lqN dO - -  q (Om -r- Or) �9 ( 7 ) 
�9 e l 

Here ,  0s and OAs a r e  t h e  t e m p e r a t u r e  heads  a t  t h e  end of  t h e  rod  and in  t h e  s e c t i o n  x = 4s 

Le t  us  compare (6) and ( 7 ) .  Accord ing  to  ( 6 ) ,  t h e  h e a t  f low from t h e  i n s u l a t e d  s e c t i o n  
increases in proportion to As The amount of heat that the boiling liquid can remove from 
the rod is limited by Eq. (7). If the heat flow from the insulated section exceeds this 
amount, then the heat balance will be disturbed. A hot spot is formed at the boundary of 
the insulated section, and the high-temperature section begins to move along the rod. It 
continues to do so until sheet boiling has spread over the entire surface. The heat-transfer 
crisis takes place. To determine the critical conditions for a prescribed value of q, we 
can use Eq. (7) to calculate the maximum value of dO/dx and use (6) to find As for this value. 
The results of calculations performed for the case of the boiling of water at atmospheric 
pressure are shown in Fig. 3. 

The tests involved study of the shift of boiling regimes on a horizontal rod with a 
diameter of 2 mm and a length of 300 m. The rod was made of stainless steel. The central 
section of the rod was thermally insulated over sections with lengths of 3, 4, and 6 mm. 
During the tests, we gradually increased the current passing through the rod (i.e., we in- 
creased the heat flux q) and we recorded the current at which the transition to sheet boiling 
took place. Figure 3 compares the experimental data with the calculation. The agreement is 
satisfactory. 

Pulsations of Wall Temperature. If a hot liquid is used to heat a wall, then a heat- 
transfer crisis is avoided and the wall does not burn. However, appreciable fluctuations in 
wall temperature are seen in this case. The reasons for these pulsations are not yet entire- 
ly clear. Below we analyze a possible mechanism of reinforcement of small temperature pulsa- 
tions in the heating liquid, the mechanism being linked to transitional boiling. 

Let the liquid boil in a large volume (or in the presence of forced convection at low 
velocities and with a low relative enthalpy) on the outside surface of a tube through which 
a heating liquid (such as sodium) is being pumped. Relatively small pulsations of the tem- 
perature of the heating liquid take place. We want to see how the wall-temperature pulsa- 
tions develop. For simplicity, we assume that the temperature changes only through the thick- 
ness of the wall. 
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Fig. 3. Dependence of the critical heat flux on the length 
of the thermally insulated section; points show experimental 
data. bs mm. 

Fig. 4. Cyclic thermal regime (1-2-3-4) of a wall heated by 
a hot liquid in the coordinates q-O (a) and over time (b); 
the dashed line shows the boiling curve. 

Having assumed that the thickness of the wall h is much less than the radius of the 
tube, we write the heat conduction equation 

O0 ~, a z o  

ax cp Oy 2 

and the boundary conditions 

_ ;~ 0E) I = aN.  [ e N .  - -  ew~l, 
ay ]u=o 

_ ~. OO I ---- q~  (ewe). 
Oy ]y=n 

Here, Owl and 0w2 are the temperatures of the inside and outside surfaces of the tube. 
steady-state solution of problem (8)-(10) has the form 

o (x) = ~ +  q~ (ew.9 [h - -  x],  

where the quantity 0w= is determined from the heat-transfer equation 

(8) 

( 9 )  

(lO) 

The 

qN (e~2) - 
6)Na -- ~W2 

1 h " m H-  

~ZNa ~, 

( n )  

A geometric interpretation of Eq. (ii) is given in Fig. 4a. For the two prescribed values 
of sodium temperature | and 8Na 2, Eq. (ii) gives the lines 1-4 (SNa 2) and 2-3 (SNal). 
These straight lines will be referred to as the "heat conduction" lines of the wall. The 
slope of the lines is determined by the resistance of the tube wall and the coefficient of 
heat transfer from sodium to the wall. There may be from one to three solutions of problem 
(8)-(10), i.e., there may be from one to three points of intersection of the boiling curve 
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qN(8) with a heat conduction line as eNa changes from i to 3. 
that the section of the boiling curves (line 2-4) 

~ <  1 + - f -  
dO (~Na 

It is not hard to show 

is unstable. If the temperature of the heating liquid 8Na fluctuates and the range of 
fluctuation exceeds the interval ONal-gNa =, then the boiling regimes will alternate on the 
heating surface in the closed cycle 1-2-3-4-1 (the path of the process is shown by arrows 
in Fig. 4a). The temperature of the heating surface of the tube will change within the 
range A@w= max, while the temperature of the heating liquid will vary within the range AONa. 
The ranges of fluctuation A0w= max and AeNa do not coincide. If the boiling curve for the 
given liquid is slightly curved in the region of the transitional regime and is close to 
a heat-conduction line of the wall, then relatively small deviations in the temperature of 
the heating liquid will be accompanied by substantial fluctuations of the temperature heat 

A@wi. 

Let us solve problem (8)-(10). We will assume that the temperature of the heatingliquid 
changes in accordance with the harmonic law 

2 \ t0 / 

and that the heat-transfer coefficients on the liquid-metal side are large eNa = ewi ; the 
material of the tube is steel, while the wall thickness is 2 mm. Figure 4b shows results 
of calculations for eNa ~ = 125~ AONa = 2~ and three values of To = 8, 20, and 80 sec. 
It is evident from the figure that wall temperature decreases from 95 to 20~ with a reduc- 
tion in the period associated with the range of fluctuation. 

The above relations are satisfactorily described by a formula obtained from the heat 
balance. In accordance with this formula, the maximum possible range of fluctuation AOw2 max 
is reached with the following period for the pulsations of the temperature of the heating 
liquid: 

�9 0 --~ % l ' -}- h a N a ,  AONa " (12) 

If T o > T0 max, then AOw2 = A0w2 max. If T 0 < T0 max, then Aew2 is directly proportional 
to To and AONa. 

Thus, numerical analysis of the temperature field of the wall made it possible to deter- 
mine the mechanism of reinforcement of pulsations in the temperature of a wall heated by a 
hot liquid. The analysis also allowed us to establish quantitative relations. The final re- 
sult is of practical interest, since steam generators designed to heat liquid metal are used 
in power engineering. 

NOTATION 

q, heat flux, W/mi; qN = qN (0), boiling curve; 2As dimension of the hot spot, m; u, f, 
perimeter and cross-sectional area of the rod, m, mi; h, d, s thickness of the plate, diame- 
ter of the rod, length, m; T, time, sec; I, thermal conductivity, W/(m.deg C); p, density, 
kg/m3; c, heat capacity, J/(kg-deg C); e = T - Ts, temperature head, deg C; 0nuc, 8crl, ecri, 
temperature head for nucleate boiling and the first and second boiling crises; Os limiting 
superheating of the liquid; 8devn, temperature head in the hot-spot region; ewi, temperature 
head on the heating surface of the wall; @Na = TNa - Ts, superheating of sodium; AeNa , T0, 
amplitude and period of pulsations of sodium temperature; aNa , coefficient of heat transfer 
from the heating liquid to the wall, W/(mi.deg C). 
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